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THE UNSTEADY BOUNDARY LAYER ON AN ELLIPTIC CYLINDER FOLLOWING
THE DMPULSIVE ONSET OF TRANSLATIONAL AND ROTATIONAL MOTION

. Dans Billings

and

Chuen-Yen Chowt®
University of Colorado
Boulder, Colorado 80309

g Abstract

The fluid motion about an elliptic cylinder im-
pulsively set into translational and rotational mo-
tion is obtained by the cethod of matched asymptotic
cxpansions for small tize azd large Reynolds number.
The constraint of the pertucbation model is that the
boundary layer thickness and the distance of travel
are of the same asymptotic order. It is found that
pitch-up motion or rotation accompanying translation
at an angle of attack i{s indeed capable of prevent-
ing the early formation of a leading edge separation
bubble. Even before evident in the streamline pat-
tern, the incipient separation bubble is accompanied
by a characteristic vorticity signature in the vi-
cinity of the leading edge that is quite different
from that with rotation. Ffurther, the onset of an
adverse pressure gradient is displaced rearward from
its location for pure translation. The pre-Kutta
condition 1ift evidently arises with the local ac-
celeration that is a conseguence of the displacement
effect of the growing boundary layer.

I. Introduction T<;\\

The dynamic suppression or retardation of sepa-
ration from an airfoil underzoing rapid pitching mo~
tion enables the airfoil to acheive an angle of at-
tack that may be much larger than the steady flow
stall incidence angle and yet retain an intact
boundary layer. This is cczcomitant to the phenom-
ena of dynamic stall. Duri=zg this motion, and for
unsteady motion in general, the presence of reversed
flow adjacent to the body need not have any particu-
lar significance; it does not signal immediate sepa-
ration in the Prandtl sense of gross departure of
flow from the surface with the consequent complete
alteration of the flow field.! vYet its presence
seems to be implicated in t:e eventual breakdown of
boundary layer flow, whether it occurs via the
tursting of a leading edge separation bubble, per-
haps fed by a thin layer of reverse flow that has
advanced upstrean along the surface to the neighbor-
hood of the separation bubble, or by the thickening
of this layer itself.2 1t was for insight into the
delay of the onset of flow reversal and {ts spread
that the present work was undertaken.

The approach taken is one that is recurrent in
the literature; namely, the development of an asym-
ptotic solution for boundary layer growth on a cir-
cular or elliptic cylinder in a short time interval
folloving the impulsive onse: of motion. The proce-
dure is to iterate upon 8 basic solution, in this
case, the Rayleigh solution for the (locally) flat,
impulsively started plate. B3y continuing in this
manner, Coldstein and Rosen~ead3 were able to extend
Blasius’s 1908 work to a third approximatien, obe
taining a coordinate-type exzansion in small time
for the boundary layer growth on a circular cylinder

*Professor, Departcent of Aerospace Engineer-
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(see also Bltchelor‘, Scuarts). Mytual interaction,
however, between the growing bourZary layer and the
outer flow vas excluded; the pressure distribution
impressed upon the boundary laver, for instance,
remained that of the unperturbed cuter flow. Wang®,
therefore applied the technique o matched inner and
outer expansions to his problem of the impulsively
started elliptic cylinder. Like Soldstein and
Rosenhead, he was able to trace the temporal appear~
ance and spatial progression of reverse flow by
solving for the time at which valil shear vanishes
(if it does) at any surface 'location. His results,
for the cylinder moving at an angle of attack, show
reversed flow advancing upstream Zrom the vicinity
of the rear stagnation point and eventually merging
with a slover-to-form reverse flos region near the
leading edge (a separation bubble). For the present
work, we adopt the method of VVang, with the addition
of an impulsive onset of rotatiom.

II. Perturbation ¥Mxdel

Initially the fluid motion is everywhere irro-
tational except on the surface of the cylinder where
viscous interaction requires that the fluid in con-
tact with the surface by at rest ralative to it and
where, therefore, a surface of slip or vortex sheet
exists., For a short time thereaf:er, the diffusion
of vorticity is the dominant effezt in the fluid
close to the surface. It is this short time inter-
val in the growth of the boundary layer that is the
concern of the present study.

Posed in this way, it is perhzps natural to con-
sider the problem as a singular ccordinate-type per-
turbation problem for small values of the independ-
ent variable time and to apply matching in the co-
ordinate normal to the surface to overcome the dis-

parity in the inner and outer characterizations. .

Although there is nothing wrong wizh such an ap-
proach, we have instead chosen to formulate the
problem as a parameter perturbatica in a parameter

¢ which tends to zero as time tenis to zero. It
represents, in the domain of szall time, a rescaling
of the geometric time scale L/U. (characteristic
length and speed) analogous to the 2% (for Neynolds
number R) rescaling of the coordinite normal to the
surface which yields the familiar boundary layer
equatijions.

For large R, another source o nonuniformity,
and a practical ccncern in evaluz2ting a series con-
sisting of only a few terms, is the presence of ra-
tios of the temporal perturbation quantity to R.
U'ith the introduction of ¢, this =“*muniformitv can
be expressed as ¢ ¢ 0(€/R) uniforzly in R as R = *,
It becomes convenicent, therfore, > establish a con-
nection between the limit processcs of R = * and ¢
- 0.

Al RT
1% FONCE OFPICE OF SCIRNTIFIC RES' - -
AN VE LW NLUTTTAL TO DTIC

Nistoot i

et hns been patt s - 0
.~‘?--"t‘, - - ~ . ’oe i
o e e 1LY PR,
REE:AA o RAN I "".imited.

VATIHEY 3. KLt i,
Chief, "echnical Informat{on Diviston

shiaftalioess




A g

The simplest connection b.ci‘cn the limit proc-
esses on R and ¢ is expressed by R~! « ¢k for k > 0.
For a specific value of k, this i3 equivalent to an
asymptotic order relation bdetveen the distance d
that the body travels in tize t at a speed U. and
the quantity & = (vt)? (v is the kinematic viscos~
ity) which characterizes the boundary layer thick-
ness for unsteady fluid motica about & body starting
from rest at t = 0. This follous from letting d/L =
U t/L = 0(c) and writing £2/1° = R~1d/L. For larye
k. the boundary layer assucptions hold to s good ap-
proximation, that is, to a high order in e. For
smaller k, we may expect an earlier departure from
strict boundary layer flow. Let us take the model
relation R~} « ¢. The proportionality constant is
then the local Reynolds nunber based on the length d
and the boundary layer thicimess is of the same
asymptotic order as the distance of travel.

I1l. Forzulation

Let us normalize the eguations of motion with
respect to the length L takea as half the distance
between the focii of the elllptic body, the density

of the incompressible fluid, and the characteris-
tic velocity combination U, = Uy + QIL of the speed
of the distant flow Ug, incident at an angle of at-
tack a,, and the rotational velocity L (fig. 1).
For convenieuce we shall define L/U. = Y so that
Ug/Ue = 1 = Y. If in addition, we let T be the
characteristic time, represeating the small time
scale of obgservation, the dizensionless parameters
U.T/L and R are found to cocpletely characterize the
fluid motion for a given geczetry of initial and
boundary conditions. In accordance with the previ-
ous discussion, we take

€= UT/L = g-2%! ¢))
where 8 is a constant of order unity. Then the
equations of motion for incc=pressible, two dimen-

sional flow in a body fixed frame and elliptic cy-
lindrical coordinates (€,n,z) become

uN L vu + 4y oh _g}b)

stiza*nat’ 'i a T
_|, )lw ahu
= ‘“"'[hat A on aq hal D &)

- - ?_"
;ﬁ%ﬁ s2vLV - vE ™

and ’l’_‘y + ah“ =0 %)

vhere U = us, + ve, and the ¢imensionless scale fac-
tor h = (sinh?g + sinZ?p)’%. The last terms of the
romentum equations are respectively the coriolis and
centrifugal contributions of the rotating reference
frame. In the latter, the raZial position vector
has becen cxpressed as T- 3-~1/ar -e ah/an. On the
surface of the cylinder, tavea to be the coordinate
surface { = ¢ ,ue ve0, A ; +woand fort = 0O,
the solution must match with :hat representing a
time dependent inviscid flow.

~—
We shall assume that the outer dependent varia-
bles (lover case) have expansions of the form

u(g,n,tic) ~ “0(5.'\) + Cux(i.ﬂ.t)
+cdu(E,n,t) 4. .
vavgtevy ety 4. (s)
prpytep + czpz +...
*"’*o"’“‘x*‘z"'z" ..

as § + 0, vhere the ltreanfunctiou satisfying Eq.
(4) 1s given by u = h~13y/3f and v = -h~1ay/an.

The outer flow, being initially f{rrotational ex-
cept for a constant background vorticity of magni-
tude 2y associated with the rotating frame, remains
strictly irrotational in subsequent approximations.
Hence, the outer fluid motion is described spatially
by

V2yy = 2 (6
2y, = 0 forn>0 ¢))

together with appropriate boundary conditions. At
t =0, ¥y=0forn > 0. The Bernoulli forms of
Eqs. (2) and (3),

102 b
Wetd(er® )-"’%;‘ ®

and
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P Y]
serve to determine the pressure distribution.
The streamfuncticn satisfying (6) and describing

the {nfitial inviscid flow about the elliptic cylin-
der is

P = -(-v) C"sinl\“'to) sin(n-¢,-ret)

. ![zoshzt coshay, - coszq(e (3% l)]

It is normalized to zero on ¢ -; zd, at a distance,

in the original (dimensional) varia:les, approaches
-U$(r-r_;‘)s‘|n(!‘|-l.-.ﬂ.t)0 (l‘ r.)

(let r = LeCIZ and £ -+ ® while L + 0 such that r is
fixed) which is recognized as the solution for the

corresponding flow about & circular cylinder of ra-
dius ry. Expanding § for small ¢ ve get

Feedecd s (10)
-(1-v) ¥ sinh (¥-1,) sin(n-%,)
*[coshzg cosh1y, -ces1n(e

¢

"

2(3- ‘.) )]

e e r{i-r) t €% sinh (5-3,) cos (n-4,)
+& {-'( 1) ¥ sinh (5- 3,1 sin(n-a,) ¢ -«

For the inner expansions, the ccordinate normal
to the surface is rescaled {n accorlance with the
expectation that a length scale different than the
geometric length L is more apprepriate for charac-
terizing local varfations. This is accomplished ty




applying a stretching transformation to the ceoor-
dinate {; the required stretch being that which is
sufficient to restore s viscous presence in the
limic € + 0 (cf. equ. (2)). Define the stretched
variable T by

E-€ =c¥ 63))
and assume that the inner dependent variables

(upper case), as functions of T, have expansions
of the form

w(E,n,ti8) & U (Eanet) + €Uy (Tun,t) + ..

v~ C{‘Io +ev, + eee}

- PME + P +.., (12)

$~c{7°+c!+...)

as € -+ 0. TFurther, express the scale factor as a
function of T by expanding h in & Taylor series
for small ¢.

hiz.n) = his..) + €T (3 )
= h.(q)[lfi!h.(‘)*'“]

Upon substituting the expansions for u, v, and
p (Eq. 12) into the governing equations (2) and (3)
and equating like powers of ¢, we get, for the
first inner approximation,

b_l_). - f &‘ =0 (13)
ot he O%*
o . o (14)

ot

and, for the second approximation,

V0, _ ¢ U --‘apo- Uo’un Vs
R AACRRE R4 a A1 v

S h )
- Us -v'ohs
12 h% T A} )
-4 é!i = é!& - (1.400%)
ho 6% ot - 06‘ (16)

+zYU, -y h.h-

Boundary and initial conditions on U° and U1 are
Uo =0Qat{=0,t>0 (17)
Uo matches cuter solution as {+=, t > 0
and fort = 0, £ >0
and U1 = 0 at E =0and t =0 (18)
lJ1 matches outer solution as § + =

The streamfunctica (zero on surface) is determincd
by integrating the tangential velocity component
in the direction norz=al to the surface:

¥ guu;
{ ju.l;.;h [(u.o;hu.)ar

—

IV. The Solutizr: for R 1= 0(¢)

The method of soluticm is formally the same as
that of Wang. Ve shall, therefore, merely pres-
ent 8 sketch of the proceci:ral details. Equations
for the inner tangential Telocity and outer stream-
function perturbations are alternately solved.
Where lacking, boundary ccmditions and, in the case
of the inner solution, ta=gential pressure varia-
tion are supplied throuzh matching conditions. For
this, van_Dyke's asymptotis matching principle is
adequate.’ Step-by-step we may also check and con-
firm our choice of an asymrtotic sequence.

The zero-th order outer solution is (cf. equ.
(10))

Y " Wo (20)
and the corresponding velocity components are
U, » -{ (l-v)e cosh (3-3,) sin(n-4, )
(21)

+Y ( sinh1¥ + cos 2y eMe- "’]}

and

LR {"(t-r) € sinn(1-3.) cos(1-04)

(22)
* YS"IZ"(:(; to) ') }

Tﬁe solution of Eq. (13) for the zeroth order
of the inner expansion is

0- 23
U= ult ) erfz “%}; (23)

where the factor u (£5,7) bzs been identified by
watching inner and outet ta_;encial velocity compo-
nents. U; 1s, of course, Rayleigh's solution. The
ttreamfunction in this apprcxzimation is obtained
from Eq. (19).

g, - ptuimafredz o (€] ao

The surface boundary ccadition for wl is found
from matching the inner and cuter streamfunction ex-
pansions, (12) and (5), with Ve and Yo given by Egs.
(20)and (24). This yields the matching condition

$Eme) = 2248w, ) (25)
v

V) is then obtained as the solution of the Laplace
equation with the additional condition that

v, = &1 + tk’(bounded quantity) as § = =,

Both the condition on the surface and that at infin-
ity satisfy the spatial-tezporal separabillty re-
quirement and vanish at t = 0. Since ¥) = 0 for ¢

= 4, the solution for the first order perturbation
to the outer streamfuncticn can be vritten as

[ X (26)

with Gl satisfying (25) and expressed as a Fourler
scries,

a 'I‘ d . 'k“"-)
¢, :-I_‘g [ATN .Z“(A\uslqo Busintn)e J @7
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vhose coefficients may be evaluated recursively
from the complete elliptic fategrals of the first
and second kind with the paczdeter depending oa the
eccentricity of the elliptic cylinder. Conver-
gence of the series is quite rapid for fatter
shapes but, as expected, much slower for eccentric-
ities approaching unity.

The fluid surface upcs vhich the inviscid
streamfunction vanishes to first order no longer
coincides with the surface of the cylinder. It
has been displaced by the groving boundary layer
as if the body were dcformizz in time and pres-
enting a larger obstacle to the inviscid fluid
wotion. We will return to this later in connec-
tion with the pressure distribution.

The first order pertuzbation, U,, to the
inner tangential component of velocity is the solu-
tion of equ. (15), an inhozozeneous diffusion eq-
uation, with the accompanyizg initial and boundary
conditions. Recall equ. (1:) that, in the first
approximation, the pressure wvas constant across the
boundary layer. Hence, an expression for 3P_/an is
found by matching with the outer expansion £3r this
derivative of pressure. Froa equ. (8), this gives

R . 3% My, L d (ugerdy X Oh
(% h,[“ a5+ 18 (28)

With this and other sutstitutions, the equation for
U becones

Tt w. i [n_.i!.: E() +40n) (29)
“ » 5[wbon?e™s o)
E(g) = 1-ef3 +23 E“erf; . %e't‘(c"‘-l)
am+Fm = (%),
- - $l .la$i
- [3t“: * ‘h;‘;)]z.
o = h,
and

Uy *ug (5 .n) , ul = du (£,,n)/dn

The solution pres&:ibed by the inhomogeneity
has the form

U =tyGsm = th2(z,y) (30)

When the boundary condi.ziozs y(0,n) = 2(0,n) are
applied, there still re:rmains an unknown function
of n in each of the soi.uzizzs y and z vhich 1is
deternined from rcatchia with the outer expansion
for the tangential velorzity component. The results
are

y- -uouoi (lvl{’/ OE(I'Z;‘)CV‘S -3 le GV‘;
A IRelh (i-ru)(‘““’)"’*‘

3 é‘]‘ +qf wit)efrakize -zl]
= .

-

2= (3], 7 out
i [Tesds v (€5-0)]
- tof (Eyerts -1ee’)

Performing the integrations indicated in equ. (19),
we obtain

P, = tGGEW +1% Hez,n) (1)

wvith ]

= 4ph u.[ (28-)erds + 2

+zp{ "“‘) +1EF+u.-§ﬁ]§
-zan(%.(l*u')erfs*é,-,(ie *1)
- E (4levsledsed s et

and

= IP{‘“—*‘[%,(v-;-z‘) + 430
(ll-‘ll)e erf; - _ C"‘(ﬁl) * C"fz

'i"w"é + [‘Lo_‘b(}—uo-)ogl.
[(;v T)erfy , (t‘#l)e “'.']
(g +0)1]

The surface conditioa for the second order
perturbation to the outer streamfurction is easily
obtained, again by matching, but tte solution is
complicated by the presence of the function F(n),
itgelf expressed as a series. The trend is to in-
creasingly more cumbersome perturbations, equations,
and solutions. We, therefore, have terminated the
development at this stage, though it turns out to
have been perhaps an unfortunate decision. Since
there are terms of the inner soluticn having no
¢2-patch (their match being precisely the surface
condition on ¥ _),1in the composite expansion, the
inner solution“will have a nonexpozentially decaying
influence at large distances from the body. Never-
theless, this influence is of ((c?)

A uniformly valid composite expansion is ob-
tained by adding the inner and outer streamfunction
expansions and deleting the matching conditions,
which occur twice in the sum. Thus,

Ve "V, * c(ﬁ1 +§) ¢+ €y +c¥)) - y* 32)
in which
q,’= ho (!“‘.)\lrg-izpi.ﬁu.

+ ([-l.)“; ( %'-Tt)( * t(‘-to)h. u!“u'”

consists of a set of the matching coaditions and
wc is expressed uniformly in the outer variable £.




Instantaneous vorticity contours, where the
vorticity is given by Y2y , are overlaid on the
ianstaataneous streamlines in Figs. 2-5 for an
ellipse of eccentricity 8/3. 8 Reynolds nuxber of
approximately 1000, a 15  initial angle of attack,
and at a dimensionless time U t/L = 0.6. vy = 0.4
for the rotating ellipse--a qﬁitc high pitch rate
2 L/U_ = 2/3)--which gives an instantaneous aagle
of atlack of ~ 28.7° at time 0.6. The circled
nuzbers in these dravings show the approximate

location of local surface vorticity extrema.

We have found that, since the time domain of
validity shrinks as the local curvature is i=-
creased, the only appreciable effect of increasing
the eccentricity is to reduce the size of the flow
features; vhen dravn scaled to the same tip radius,
the patterns are essentially identical. Furtler,
as time advances, flow structures merely continue
to grow. For example, the trailing edge vortex
shows no inclination to depart and, in trials with
8 non-rotating circular cylinder, no secondary re-
circulating flow structures formed. Obviously
convective influences are not strongly represeated
in a diffusion dominated solution. For this jar-
ticular ellipse and Reynolds number, {mprobabdle
distortion in the flow field appeared for times
@greater than 1.0 or 1.2. Direct comparison with
experiment might only be feasible for considerably
sualler times.

Streamlines and vorticity contours for the
rotating cylinder (Figs. 4,5) are depicted relative
to the body fixed frame. This casts a slight
shadow on the interpretation of streamline patterms.
However, the interpretation of flow structures,
such as a separation bubble, remain fairly reliable,
especially when observed in a continuunm of rotation
rates, although the particular form may vary. This
indicates a need to incorporate all available de-
scriptions, including the pressure and vorticity
fields, into interpretations. Transformation from
the body frame to one that {s instantaneously co-
incident but non-rotating,

Vor " ¥ - % (cosh?f - sinZn) ,
accomplishes little in the way of aiding the inter-
pretation of streamlines but it shows that the
pattern of vorticity contours is invariant, the
values only differing by 2y. (In the transforzed
system, the surface of the rotating cylinder is no
longer a streamline; streamlines depart from that
portion of the surface which {s advancing into the
fluid and are drawn to that portion which is re-
treating.)

We make the following observations:

1. Without rotation (Fig. 3), the strea=-
line pattern is a deformation of the early sy=etric
pattern of oscillating flow behind a circular cy-
linder. At the instant depicted, the saddle pcint
has been pulled apart such that the trailing edge
vortex is no longer bounded by a closed stagnation
streanline (8 piecewise continuous streamline in
the fluid whose terminal points are body stagzation
points); the vortex is free to depart into the
wake. Such is concomitant to the establishment of
the Kutta condition at the trailing edpe. In
contrast to this, for the rotating body (Fig. 5),
the trailing edge vortex is confincud by a closed
stagnation strcamline (as 1f the saddle point were
pulled apart across the other two vertices) ol
wore closely rcsembles a scparation bubble. <Thus,
the establishcent of the Kutta condition 1s

temporarily, st ieast, suspended.

2. In the neighborhood of the leading edge
(Figs. 2,4), we note the presence of very high
values of surface vorticity for the case of fixed
angle of attack as compared to those on the rotating
ellipse. This is one indication of the fairly sharp
turn the flow must make about the leading edge from
the stagnation point and supports the view that the
apparent angle of attack is reduced (indeed elimi-
nated in the case drawn) by rotation. Additional
support comes from the presence of the cell of
positive vorticity lying just off the leading edge
vhich is completely absent in the case of rotation.
Its presence may be taken as a precursor or sign
of an incipient leading edge separation bubble and
conversely for its absence. (A separation bubble
is not evident from the streamline pattern for such
a low angle of attack. At & 28", the instantaneous
angle of attack of the rotating body, a bubble is
well developed.)

V. Pressure Distribution and Lift

The zeroth order surface pressure distributica
is first that of the outer inviscid flow impressed
across the bl (P,(n) = PO(E »N), ct. Eq. (14)). In-
tegrating Eqs. (8,9) along 8 path running from a
point at infinity to an arbitrary point (£ ,n) on
the surface of the ellipse and expressing the
result as a pressure coefficient, we get(for vy ¢ 1,
i.e., v, ¢ 0)

G PPy o 4= ),{-.’;(sinh’;.-sin‘q)

,— Ty
36-v" ¢ " (3
e v)) + 2% }
+ [5(usen) 31]!..1
where ¢, i{s a velocity potential defined by i, =9¢

for the time dependent first order (outer) veiocit)lr.

& = tv(i-v) ¢ cosh (3-8, ) sin (1-a,)

L2 . k(%1
* z%.r é'( Rwsin ko - By cos k:‘)e (1.

in which the first term stems from the changing
angle of incidence of the distant stream and the
second represents the displacement affect of the
growing bl. The pressure singularity at t = 0 is
traceable to the impulsive onset of motion: The
initial rate of growth of the BL, estimated by the
initial pseed at which vorticity penetrates into
the fluid with penetration depth taken in the usual
sense as that depth at which the vorticity has a
value 1/e times its surface value, is singular at

t = 0, so also is the outer inviscid flow response.

In order to determine the first order pressure
perturbation, inner or outer, it would be necessary
to know the second order perturbation to the outer
streamfunction, y2, or at least 3.2/3f calculated
at £5. This should not be too difficult to calculate
but has not been included here.

Lift is determined from the integral

"
€, = - toshy, cosalt) L[ Coln) - c,(m-q)] ungdy (3




in which a(t) is the instantaneous angle of sttack
and the projection of surface area onto the chord
1s given by the ratic of [dx(n)| = coshfg sinndn
to hdn, This 1is easily integrated to give

(L= sak) [ ;—_'-:," tosa, 35)

3
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with ”
B oe ot | wetnon wsndy
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the only remaining Fourier coefficient.

The pressure (C_) distributions for the
rotating and non-rotaging cylinders are drawn for
comparison in Fig. 6 and the associated values of
lift for various times are presented in Table 1.
For the rotating cylinder, we notice the extended
region of favorable pressure gradient on the upper
surface which qualitatively resembles the distri-
bution on a nonrotating elliptic cylinder at a very
small or zero angle of attack. The pressure drop
near the trailing edge, also on the upper surface,
occurs under the influence of the trailing edge
vortex. In contrast, the non-rotating body ex-
hibits the usual extended region of adverse gradient
and diagonal symmetry. Lift is seen to be sub-
stantially higher for the rotating ellipse than for
that at a fixed angle of attack. The t=!/Z decay
is, in this approximatrion, the vestige of the
impulsive start.

The dimensionless circulation inferred from
the presence of 1ift is CL/(I-Y). At the time of
this writing, we have not succeeded in spatially
integrating the vorticity to confirm the values of
circulation. 1In part, the difficulty lies in the
non-exponential decay of vorticity mentioned pre-
viously.

vi.

Conclusion

Within the limitations of the solution, we
have seen here the addition of pitching wotion or
rotation suppresses the early formation of leading
edge separation bubbles by creating a situation in
which the effective angle of attack is much reduced.
We have also found the initial 1ift to be enhanced
and the establishment of the Kutta condition at the
trailing edge to have been put in abeyance by
rotation.
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Fig. 2.

Leading edge of elliptic cylinder,
translation to left at 15° angle

of attack at time U.t/L = 0.6,
Streamlines (dashed) and vorticity
contours (solid, ladeled) are over-
laid. Circled values indicate
approximate location of vorticity
extrema.




Fig. 3. Trailing edge of eliiptic cylinder
translating at 15° angle of attack
at time 0.6 (cf. Fig. 2).
t= .2 .4 .6 .8 1.0
y= 0.0 .180 .127 .104 .090 .0C00
0.4 4.104 3.8%91 3.704 3.510 3.301
Tatle 1. Calculated lift versus tine

Fig. 4.

Leading edge of elliptic cylinder

rotating clockvise and translating
at an instgntareous engle of attack
28.7°, time 0.6, and rotation rate

aL/u, = 2/3. (ci. Fig. 2)

Fig.

Trailing edge of ellizzic cylinder
rotating and translatizg at an
instantaneous angle of attack of
28.7° (pitch-up from ::°), for
time 0.6 and rotation rate 2/3
(cf. Fig. 2).

6.

.2 FUTEE .3 TZ

Chord Position

C_ distribution or ell:iztic cvlinders:
Dashed curve is for cviinder trans-
lating at 15° angle of attack: solid
curve is for cylinder :ransiating and
rotating (pitch-up) frcz an inizial
angle of attack of !.2-. Time C.Z.
Upper and lower surface: arce deaoted
Sy U and L.







